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A Simulation Pipeline from Scene to Lensless image

In Section 3 of the original paper, we illustrate the lensless imaging process
by convoluting the scene’s spatial intensity distribution lλ(x, y), with the point
spread function (PSF), pλ(x, y), as shown in Eq.(1). In the following, we will
detail the procedure for simulating the imaging process of a lensless camera with
a learnable mask, using an RGB image for simulating the scene. This includes
simulating the PSF with specific mask parameters, converting RGB images into
spatial intensity distributions, convolving these distributions with the PSF, and
finally, simulating sensor noise to generate the simulated lensless sensor images.
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Fig. 1: Differentiable wave-based propagation simulation for the lensless camera. A λ-
wavelength point within a scene emits an incident wave with amplitude Aλ(x

′, y′) and
phase ϕλ(x

′, y′) upon reaching the mask. The mask modulates this wave, generating
a wave field Uλ(x

′, y′, 0+) immediately after the mask. Following the modulation, the
light propagates a distance d, resulting in the wave field Uλ(x

′, y′, d) detected at the
sensor.
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Wave-based point spread function (PSF). As illustrated in Fig. 1, consider
a lensless camera consisting of a mask M placed at the longitudinal position
z = 0 and a sensor placed at z = d. Let Uλ(x

′, y′, z) be a complex scalar wave
field for the wavelength λ, which is a complex function of transverse coordinates
x′, y′ and longitudinal position z.

The mask modulates the amplitude and the phase of the incident wave with
the modulation factors Am(x′, y′) and ϕm(x′, y′) respectively. The wave field
immediately after propagating through the mask is:

Uλ(x
′, y′, 0+) = Aλ(x

′, y′)Am(x′, y′)ei[ϕλ(x
′,y′)+ϕm(x′,y′)], (1)

where Aλ(x
′, y′) and ϕλ(x

′, y′) represent the incident wave’s amplitude and phase
by a point source at infinity. Here we use a to-be-learned binary amplitude mask
in the face verification task. We model the lensless mask M with learnable pa-
rameters for transparency w(x′, y′) at different spatial locations (x′, y′). The
modulation for the amplitude Am(x′, y′) attributed to the incident wave is ex-
pressed as: Am(x′, y′) = w(x′, y′). Therefore, Eq. (1) can be simplified as :

Uλ(x
′, y′, 0+) = Aλ(x

′, y′)w(x′, y′)ei[ϕ(x
′,y′)], (2)

The diffracted wave then propagates to the sensor plane at z = d according
to the Fresnel diffraction integral [2]:

Uλ(x, y, d) =
eikd

iλd

∫∫
Uλ(x

′, y′, 0+)H(x, y;x′, y′)dx′dy′, (3)

where wave number k = 2π/λ and the free-space propagation frequency re-
sponse H(x, y;x′, y′) = e

ik
2d [(x−x′)2+(y−y′)2] . The point spread function (PSF)

corresponding to the point source at infinity is:

pλ(x, y) = |Uλ(x, y, d)|2. (4)

The process of light modulation via a mask to generate a PSF is fully differ-
entiable. We can optimize the mask parameters θM = {w(x′, y′)} to obtain the
desired light modulations and PSF, thereby improving the performance of down-
stream tasks. Note that in amplitude masks, the PSF pλ(x, y) remains consistent
across any wavelength λ and we can drop the wavelength parameter.

Convert RGB images to spatial intensity of scenes. To clearly define
this imaging simulation challenge, consider an RGB image I ∈ RC×H×W , where
C denotes the number of color channels. Accompanying this, we have a PSF
P ∈ RC×HP×WP . The objective is to produce an image M ∈ RC×HP×WP that
represents what a lensless sensor would capture.

First, we convert the RGB image I into a scene light spatial intensity map
l(x, y) ∈ RC×Hsc×Wsc . This transformation enables us to simulate the effects
of a specific physical imaging setup by convolving the intensity map with the
digital PSF P . The imaging setup is characterized by the following parameters:
the scene’s height h, the distance from the scene to the encoder d1, and the
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Fig. 2: Simulation from the RGB image to sensor capture.

distance from the encoder to the image plane d2. For such a configuration, the
scene height at the sensor is given by:

ĥ =
d2
d1

h. (5)

Now, if we have a PSF that is captured at the given distances with a reso-
lution of HP × WP pixels and a pixel pitch of p, the spatial resolution on the
sensor corresponding to the scene’s height ĥ is calculated in pixels as:

Hsc =
ĥ

p
. (6)

Next, we resize the RGB image I to match the spatial resolution of ĥ on the
sensor, resulting in l(x, y) ∈ RC×round(Hsc)×round(Wsc), where the scaling factor
S is computed using S = (Hsc/H). This means we scale the height H and
width W of the original image by S to match the sensor’s calculated spatial
resolution Hsc. Finally, to facilitate proper convolution with the PSF, we pad
l(x, y) with zeros to match the PSF’s dimensions, resulting in a final intensity
map Î of shape RC×HP×WP . This ensures compatibility between the intensity
distribution and the PSF in the subsequent convolution operation required for
simulating the lensless camera’s image capture. Fig. 2 schematically illustrates
the entire simulation procedure.

Convolve the rescaled scene with PSF. After rescaling the image to a
final intensity map with the same shape as the PSF, we then can do the con-
volution between the rescaled scene and PSF, to obtain the convolution result
S ∈ RC×HP×WP :

S = Î ∗ P. (7)

It is noted that the convolution kernels P have a large shape, making it more
efficient to perform convolution in the spatial frequency domain rather than
the spatial domain. In the spatial frequency domain, convolution becomes an
element-wise multiplication, allowing for the use of the Fast Fourier Transform
(FFT) algorithm to efficiently switch between the spatial and spatial frequency
domains.
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Add Noise on Sensor. The convolution result R is integrated over the sensor
pixels and corrupted by read and shot noise [3], yielding a measurement M on
the sensor given by:

M ∼ N (µ = S, σ2 = λread + λshotS). (8)

where λread and λshot represent coefficients of read and shot noise respectively
and are determined by the sensor’s analog and digital gains [1], N (µ, σ2) is the
normal distribution with mean µ and variance σ2.

B Simulation of Varying Lighting Conditions
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Fig. 3: Simulation from the RGB images to sensor captures with varying levels of noise.

In Section 5.7 of the original paper, we explore the simulation of varying
lighting conditions for the lensless camera by adding different levels of noise. By
carefully manipulating the sensor’s digital gains, we can precisely control the
noise level on the lensless sensor capture, achieving specific noise levels, such
as an SNR of 20 dB, as shown in Eq. (8). Additionally, Fig. 3 present several
examples of lensless images that have been modified with varying degrees of
noise, illustrating the effects of these conditions on image quality.
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C Optimization of Binary Amplitude Mask

To optimize a binary amplitude mask during end-to-end training, we utilize a
custom differentiable "binarizing" function. During the forward pass, the func-
tion takes the real-valued mask weights w and converts them to binary by apply-
ing a round operation. However, this round operation is not backward compat-
ible, so we cannot propagate gradients through it. To address this, we first clip
the weights between 0-1, then calculate the binary version by rounding. We take
the detached version of this as the final output. However, for the backward pass,
we want the gradients to flow through the original weights w before clipping.
Therefore, we subtract the detached clipped weights from the binary output
and add back the original clipped weights. This acts as an identity operation
for the backward pass while still providing a binary output. This allows us to
optimize the real-valued w during backpropagation to learn the optimal binary
mask. Here is the pseudo-code of the "binarizing" function and Fig. 4 shows the
gradient of the binarizing function:

def Binarize(w):
clipped_weights = clamp(w, min=0, max=1)
binary_weights_no_grad = round(w)
binary_weights =

binary_weights_no_grad.detach()
- clipped_weights.detach()
+ clipped_weights

return binary_weights Fig. 4: The gradient of binarizing
function.

D Implementation Details of Reconstruction Attacks

In Section 5.3 of the original paper, we introduce to simulate the reconstruction
attacks with the RGB-lensless face pair data. We trained a U-Net [4] as a decoder
for simulating reconstruction attacks. Here we introduce the implementation
details of the training. The lensless captures, originally sized at 240x200 pixels,
were first padded to achieve a resolution of 256x256 pixels. These padded images
were then fed into a U-Net model characterized by a feature dimension of 64, with
the smallest resolution of the feature maps being 16x16 pixels. To accommodate
the varying scales of the attacks simulated—ranging from 10 plaintext attacks to
10,000—we adjusted the batch sizes accordingly: 2 for the 10 plaintext attacks
scenario, 4 for the 100 attacks, 16 for the 1,000 attacks, and 32 for the 10,000
attacks scenario. All models were trained using the Adam optimizer, with a
learning rate set at 2e-4, across a total of 50 epochs.
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