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Abstract. Lensless cameras, innovatively replacing traditional lenses
for ultra-thin, flat optics, encode light directly onto sensors, producing
images that are not immediately recognizable. This compact, lightweight,
and cost-effective imaging solution offers inherent privacy advantages,
making it attractive for privacy-sensitive applications like face verifi-
cation. Typical lensless face verification adopts a two-stage process of
reconstruction followed by verification, incurring privacy risks from re-
constructed faces and high computational costs. This paper presents
an end-to-end optimization approach for privacy-preserving face veri-
fication directly on encoded lensless captures, ensuring that the entire
software pipeline remains encoded with no visible faces as intermedi-
ate results. To achieve this, we propose several techniques to address
unique challenges from the lensless setup which precludes traditional
face detection and alignment. Specifically, we propose a face center align-
ment scheme, an augmentation curriculum to build robustness against
variations, and a knowledge distillation method to smooth optimiza-
tion and enhance performance. Evaluations under both simulation and
real environment demonstrate our method outperforms two-stage lens-
less verification while enhancing privacy and efficiency. Project website:
lenslessface.github.io.

1 Introduction
With recent advances in optical engineering and computational photography,
lensless imaging systems have emerged as a new, ultra-compact, lightweight,
and cost-effective imaging system. Unlike traditional cameras that use large,
heavy-weight focusing lenses, lensless cameras capture light using a simple and
flat optic, such as an amplitude [4, 5] or phase mask [3, 6, 25]. These optics
transform incoming light into highly multiplexed patterns. Consequently, im-
ages captured by lensless cameras are not immediately recognizable and require
detailed knowledge of the system’s mask pattern to reconstruct the original cap-
tured scenes. The low cost, small size, lightweight, and potential for increased
privacy make lensless imaging systems a promising option for use in wearable
devices, augmented and virtual reality, and biometric identification.

Specifically, lensless cameras offer a promising hardware solution for privacy-
preserving imaging. Taking face recognition as an example, traditional recogni-
tion systems capture a clear face image using a convergence lens camera and
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Fig. 1: Left: Comparison of different face verification approaches: lens-based
(top) v.s. two-step lensless (middle) v.s. our optimized one-step lensless method. Our
approach enhances privacy against software attacks as well as maintains robust face
verification performance. Right: Challenges for robust lensless-based face ver-
ification as compared to RGB-based methods. Our robust lensless-based face
verification is designed to accurately distinguish identities with encrypted captures,
demonstrating resilience to variations in background, rotation, shift, and scales.

recognize facial identity through a verification algorithm, as shown in Fig. 1(a).
Such a verification system may be vulnerable to the potential of a network attack,
which may hijack camera data. On the other hand, lensless cameras only capture
unrecognizable images and thus protect facial images from security attacks.

A typical lensless verification system uses a reconstruct-and-verify approach.
This approach first restores the original image from the encoded one and then
subsequently applies conventional verification algorithms. However, this method
has its weaknesses. First, while lensless imaging can prevent hackers from hijack-
ing camera data during transmission, it remains vulnerable to software attackers
who can directly access reconstructed images, as illustrated in Figure 1(b). Sec-
ond, the recognition accuracy is much lower than that of traditional RGB face
verification systems, both because the reconstructed images are often blurry and
the mask patterns designed for reconstruction are sub-optimal for face verifica-
tion. Lastly, the additional reconstruction is not mandatory and may increase
computational costs, making it a less desirable solution for edge computing.

Therefore, to improve verification accuracy while preserving privacy better,
we propose a novel reconstruction-free method with lensless cameras for facial
verification tasks. Unlike the reconstruct-and-verify process, our approach is a
one-step solution that directly verifies faces on the encoded sensor images, with-
out reconstructing facial images as intermediate results in the pipeline, as illus-
trated in Fig.1(c). This design has three advantages. First, the entire system
is invulnerable to both camera data hijacking and software attacks, and it also
reduces computational cost by skipping the reconstruction step. Second, the
mask is also optimized to improve verification accuracy, capturing key facial fea-
tures for verification. Therefore, it outperforms hand-crafted masks that are only
designed for high-quality reconstruction. In summary, our approach is an end-
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to-end optical-electronic neural network for face verification, offering enhanced
security, cost efficiency, and improved verification accuracy.

Moreover, a simple end-to-end learning strategy for the proposed optical-
electronic verification may result in poor accuracy (70% on LFW [20]). To deal
with face rotation, translation, or background changes, traditional face verifica-
tion pipelines need to first align input images to a canonical pose using simple
transformations and cropping, as shown in Fig. 1(d). However, in a lensless
setup, it only captures an encoded image that does not keep the original spatial
structure, making traditional alignment impossible, as shown in Fig. 1(e).

In response to these challenges, we propose a novel robust scheme to make
end-to-end optimization with various face images practicable (from 70% to 95%
on LFW). First, we design a new face-center alignment strategy, aligning the face
center with the center of lensless images, enhancing system resilience against face
translation. Second, to make our model robust to variations including rotation,
scale, and background changes, we adopt an augmentation curriculum of varia-
tions. This curriculum gradually increases the complexities of variations, allowing
the model to initially focus on learning face verification and then progressively
build robustness against these variations. Third, to circumvent the local mini-
mum during training, we proposed a novel cross-modality knowledge distillation
method. This technique transfers verification capabilities from an RGB face ver-
ification model to our lensless verification model, smoothing the loss function
landscape and aligning face verification performance to the RGB model. It is
noted that the three strategies function as a holistic system, with each process
being essential for achieving satisfactory optimization results.

In summary, our contributions are as follows: 1) We introduce an end-to-end
optimization-based face verification system using lensless cameras. The proposed
method brings improvements in privacy, accuracy, and speed when compared
to conventional two-stage lensless face verification techniques. 2) We propose
a novel training scheme to make the end-to-end verification network trainable.
The training scheme includes a face center alignment tailored for lensless setup,
a new cross-modality knowledge distillation to avoid local minima, and an aug-
mentation curriculum that improves the robustness of our model under different
variations. 3). We evaluate the efficacy of our method in both simulated and real
environments. Experiments show that our method outperforms the two-step so-
lutions, moving closer to the accuracy of traditional RGB-based approaches while
inheriting hardware-level privacy protections from the lensless design.

2 Related Work

2.1 Lensless imaging

Lensless imaging [7] has become an emerging topic in visible light computational
imaging due to its potential for miniaturizing camera systems. Unlike traditional
cameras, lensless imaging systems use a mask element to modulate an incoming
scene instead of a focusing lens. This technique can employ a variety of masks,
including phase gratings [41], random diffusers [3, 25], hand-crafted designed
phase masks [6, 10], amplitude masks [2, 4, 39], compressive samplers [18, 37],
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and spatial light modulators [17, 49, 50]. Replacing the lens with masks results
in multiplexed sensor captures that lack visual resemblance to the scene. This
provides inherent privacy protection as the original scene is non-visible.

Transforming lensless images into identifiable images usually involves the use
of computational reconstruction algorithms, which can be broadly categorized
into optimization-based methods and data-driven methods. Optimization based
approaches model the reconstruction as a regularized least squares problem, with
prominent examples such as sparsity in the spatial domain [4, 6] and frequency
domain [34]. Conversely, data-driven methods [23, 30, 35] use deep neural net-
works to learn a mapping from the sensor captures to the reconstructed images.
2.2 Perception with Lensless Camera
Due to the inherent hardware-level privacy protection feature, lensless cameras
have been widely utilized to perform perception tasks [15,21,28,29,31,45], espe-
cially those associated with humans and faces, like face attribute detection [5],
face recognition [14,38,42,44,47], and action recognition [45]. Some [21,44] adopt
a two-stage reconstruction and perception pipeline, which could be suboptimal
in terms of accuracy, privacy, and efficiency. Others [14,29,31] try to perform the
perception tasks directly on encoded sensor images. However, due to the lack of
mask optimization in the process, their performance remains inferior compared
to traditional RGB-based methods. More recently, for enhanced privacy or per-
formance, some work [5, 38] have performed end-to-end optimization of lensless
masks and neural networks for downstream perception tasks.

Our work is similar to [5, 38] in performing joint optical-electric neural net-
work optimization. However, Bezzam et al. [5] optimize for privacy by downsam-
pling encoded images, making the identities hard to distinguish. Shi et al. [38]
only deal with aligned faces, and their face verification performance lags behind
RGB-based methods. In contrast to these approaches, we develop a method for
lensless-based face verification to withstand various variances, making it more
suitable for real-world applications.

3 End-to-end Lensless Optics Formation
Deep optics [40, 46], or end-to-end methods for optimizing optical components,
seek to co-design the optics and corresponding computational algorithm to maxi-
mize performance for a specific application. Based on this concept, we present an
end-to-end-differentiable pipeline that supports joint optimization of the lensless
camera mask and post-capturing processing network.

Imaging formulation model and simulation pipeline. In our setup,
we place an image sensor with a lensless mask at a known distance from the
scene to be captured. Based on the scalar diffraction theory [12], we have such
an assumption: for a given wavelength λ, image formation between two parallel
planes acts as a linear shift-invariant system. For incoherent light of a distant
scene, the theory enables modeling the image formation Sλ(x, y) on the sensor
as a convolution:

Sλ(x, y) = (lλ ∗ pλ)(x, y), (1)
where ∗ is the convolution operator, lλ(x, y) represents the scene’s spatial in-
tensity distribution. pλ(x, y) denotes the point spread function (PSF). In our
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simulation, we use RGB images as the scene intensity distribution and simulate
PSF based on the mask pattern. More details are discussed in the supplementary.

Based on this model, the lensless sensor capture S is formulated as a linear
function S = g(I,M) of the RGB image I and the mask pattern M . This linear
shift-invariant assumption is based on the scene-to-mask distance obeying the
paraxial criterion [40]. The majority of standard face verification scenarios meet
this criterion, thereby validating the assumption for such applications.

Trainable mask to PSF. We formulate our lensless mask M with learn-
able parameters for transparency w(x, y) at varying positions (x, y). The mod-
ulation for the amplitude Am(x, y) attributed to the incident wave is expressed
as: Am(x, y) = w(x, y). We can optimize the mask parameters θM = {w(x, y)}
to obtain the desired light modulations and PSF, hence enhancing the results
of subsequent tasks. Note that in amplitude masks, the PSF pλ(x, y) remains
consistent across any wavelength λ and we can drop the wavelength parameter.

End-to-end training objective. Leveraging a differentiable image formu-
lation, we can simultaneously optimize the optical mask and electronic model
for desired tasks. Unlike previous methods that only optimized the post-capture
processing model, our end-to-end joint training also finds an optimal mask that
extracts useful features for the target tasks. These features are stored in encoded
images and are processed by the subsequent model, as illustrated in Fig. 2.

Given a training dataset {Ii, ti}Ni=1 with input scene image Ii and the target
label ti, the optimization objective is:

min
θ,θM

N∑
i=1

L(ti,Fθ(g(Ii,M)))− α
∑
x,y

w(x, y), (2)

where the first term L is for the loss function of the target task. For face verifica-
tion, L is the ArcFace loss function [11]. Fθ is the downstream task model, like
the face verification model, with parameter θ. g(·, ·) is the differentiable render-
ing process described above The second term penalizes small masks, to ensure
the learned mask’s transparent regions are large enough to yield unidentifiable
images for privacy-preserving. The α is a factor to balance the losses and in our
experiments, we set α = 0.01.

4 Lensless Face Verification Pipeline

Our goal is to make the optical mask and face verification model optimal for
face verification through an end-to-end training process. To increase efficiency
and safeguard privacy, our pipeline skips the reconstruction process and directly
executes face verification on encoded captures. Following the previous setups
in [44], we assume that only one face appears in the captured scene.

One challenge of this pipeline is that the encoded captures it produces are
not inherently suitable for face recognition. As shown in Fig. 1(d), in traditional
RGB face verification, the input images are first cropped and aligned to a canon-
ical space before being sent to the verification model, to reduce the impact of
rotation, translation, and cluttered backgrounds. However, this process cannot
be applied to a lensless camera, as the encoded captures encapsulate all scene
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information, making direct cropping or alignment infeasible. A simple way to en-
sure robustness to different variations is using a training set that includes these
variations or augmenting existing ones with such variations. Nonetheless, lensless
captures lack the spatial structures vital for face recognition, which complicates
the use of simple end-to-end optimization methods. Consequently, these methods
alone have not been successful in establishing robust lensless face verification.

To train a robust face verification that can handle translation, rotation, and
background changes, we propose a holistic end-to-end optimization framework
comprising three critical components: 1) A novel physics-based alignment al-
gorithm tailored for lensless captures, designed to counteract facial translations
before processing by the face verification model; 2) A new augmentation curricu-
lum to increase the robustness of the face verification model; 3) A cross-modality
distillation method to ensure facial feature alignment and effective optimization.

4.1 Alignment before Verification

First, we explore the face-center alignment method, a preprocessing step for
lensless captures before they are processed by the verification model. To start
with, we define two spaces: scene space and sensor space, as shown in Fig. 3.
Images before capture (optical mask) are in the scene space and images captured
by the sensor after light passes through the mask, are in the sensor space.

Unlike RGB images where the alignment is done by cropping faces from back-
grounds, lensless images embed entire scenes across every pixel, making tradi-
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tional alignment infeasible. To solve this issue, we apply face-center alignment
in the sensor space to center and crop an initially off-centered encoded facial
capture to a fixed size within the sensor space. This alignment translates a face
into a canonical position, reducing the training and testing gap and enhancing
the accuracy of off-center faces. In contrast to RGB-based face alignment which
handles all types of similarity transformation, our lensless alignment only focuses
on translation due to translation equivalence. Other similarity transformations,
like rotation and scaling, are addressed in a later augmentation curriculum step.

The key idea of lensless face alignment is based on the principle of translation
equivalence in convolution. According to this principle, the shift of the convolu-
tion output equals the convolution of the shifted input image, except on image
boundaries. Recall that lensless capturing can be formulated as a convolution, as
shown in Eq. (1). Therefore, if we can determine the face center position in the
scene space, we can simply center the face in the sensor space, as the centered
sensor image (the bottom row of Fig. 3) is the same as if we centered the face
in the scene space and captured it (the top row of Fig. 3).

Based on this, we train a face center detection model Gϕ on sensor images
with the following objective, similar to Eq. (2):

min
ϕ,θM

N∑
i=1

L(yi,Gϕ(g(Ii,M))), (3)

where {Ii, yi}Ni=1 is a face-center dataset with unaligned images Ii and alignment
yi, and M is the mask to be optimized. Then, we use the output of this detection
model to center the face in sensor space.

4.2 Verification Model Training

After centering the face, we train a face verification model that can accurately
recognize the face, under variations in rotation, scaling, and background changes.
However, training a model to directly recognize encrypted captures under these
conditions is difficult, often resulting in a model with poor generalization ability,
as already verified by previous works on RGB-based face verification [43]. To ad-
dress this issue, we propose two strategies to make this training process tractable,
the curriculum learning of augmentation and cross-modality distillation.

Curriculum learning of augmentation. To enhance the robustness under
different variations, we first implement random augmentations, including rota-
tion, scaling, and background changes, to the face images within the scene space,
as shown in Fig. 4. This enhances the diversity of our face recognition dataset.
We then execute an end-to-end training process with the augmented data.

However, directly applying all augmentations to face images from scratch
makes the training hard to converge. Therefore, we adopt an augmentation cur-
riculum that progressively increases in difficulty. This enables the model to ini-
tially focus on acquiring face recognition capabilities through easy examples, and
gradually develop robustness against variations with more challenging examples.
We control the degree of augmentations, such as rotation angles and background
sizes, and incrementally increase these augmentations, as illustrated in Fig. 4.
Specifically, we amplify the augmentation of variations following a cos-annealing
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warm-up strategy. Specifically, to augment a particular variation eventually with
a maximum magnitude ηmax, we initiate the training with a minimum magnitude
ηmin, and gradually increase the magnitude at each epoch t as:

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1− cos

(
t

tmax
π

))
, (4)

where tmax is the total number of epochs. Experiments in Fig. 10 show that this
curriculum learning (CL) greatly improves the stability of the training process.

Cross-modality distillation. Directly training face verification models on
encoded images is very challenging, even when the impact of different variations
is minimized through previous alignment and augmentation. This is because the
encoded image does not keep the original spatial structure, making the train-
ing process hard to converge. Consequently, most previous methods reconstruct
original images first before proceeding with downstream recognition tasks.

We propose a novel model distillation scheme to solve this challenge. Model
distillation is widely used in transferring knowledge from a well-trained teacher
model to another to-be-learned student model [16]. In light of this, we propose a
cross-modality distillation method to employ an already trained RGB-based face
recognition model to distill knowledge into the hybrid optical-electric lensless
model, enhancing its generalization capabilities and optimization efficiency. The
RGB model extracts highly discriminative features for identity verification, and
through distillation, we aim to empower our lensless model with similar discrim-
inative capabilities. Considering the substantial difference in modality between
lensless and RGB images, we apply relational knowledge distillation [32] which
focuses on transferring the structural relations of features, rather than the fea-
tures themselves, to mitigate the effects of the modality gap. By transferring the
relations of features, the inputs of teacher and student need not be pixel-matched
as long as they represent the same concept. As shown in Fig. 2, the RGB teacher
model’s output features of the aligned face are used to supervise the training of
the hybrid optical-electric student model with unaligned samples.

Moreover, distillation also brings additional advantages. It enhances the align-
ment of features from lensless captures at both instance-level and identity-level.
The distillation process ensures that features from unaligned lensless images
share a similar feature with the aligned RGB images and thus improves the
robustness of the model under variations. Furthermore, given that RGB-based
models proficiently associate different images of the same person with similar
features, the distillation also makes features of lensless captures from a singular
identity closely align with that identity’s feature.

Optimization objective. Based on our above discussion on training strate-
gies, we define the optimization objective as the summation of the identification
loss and the distillation loss. Specifically, given a face dataset {Ii, ti}Ni=1 with the
identity labels ti and a pretrained RGB face recognition model Ft, our training
finds the optimal masks M and the parameters θ for lensless face verification
model, by minimizing the following loss:

min
θ,θM

N∑
i=1

Lid(yi,Fθ(C(g(A(ti),M)))) + Ldist(Ft(Îi),Fθ(C(g(A(Ii),M)))). (5)
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Fig. 5: Prototype of our lensless camera
for face verification.
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Fig. 6: Visualization of scenes (top)
and real captures (bottom).

In the loss function, a RGB face image has sequentially gone through data
augmentation A(·), lensless imaging simulation g(·), and face alignment C(·),
resulting in the aligned capture of the augmented image C(S(A(Ii),M)). The
first term is the ArcFace identification loss [11] that compares the recognition
result on this image with the ground truth ti. The second term is a distillation
loss that minimizes the difference in recognition results between the RGB and
lensless pipelines, following the relational knowledge distillation framework [32].

5 Experiments

In this section, we evaluate the performance and robustness of our end-to-end
face verification pipeline, on both simulated and real-world data. Additionally,
we analyze the contribution of each component, and also validate the robustness
of the proposed approach under different lighting conditions.

5.1 Experimental Setup

Hardware configuration. The experimental setup consisted of three main
components: scenes displayed on a screen, a jointly-optimized binary amplitude
mask, and a CMOS image sensor, as shown in Fig. 5. The image sensor used
was a Sony IMX250, located inside a FLIR BFS-U3-51S5C-BD2 camera. It is a
2056×2464 RGGB Bayer sensor, with each pixel being 3.45µm wide. The full sen-
sor array measures approximately 7.1mm×8.5mm. The binary amplitude mask
was fabricated on a chrome-coated glass substrate using photolithography. The
feature size (width of each unit grid) of the mask was 0.0276mm, around 8 times
the pixel width. The mask has 257×308 units, making its size approximately the
same as the sensor. The mask-sensor distance is set to 2mm.

Datasets. We utilized extensive public datasets for training and evaluat-
ing our proposed methods. For face verification tasks, we used the Asian-Celeb
dataset [1] containing 2.8M images from 94K identities for training and used
both LFW [20] and FCFD [44] datasets for evaluation. For both datasets, we
followed the “unrestricted with labeled outside data” protocol proposed in [19]
and presented average accuracy rates on 10-fold cross-validation sets.
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The optimization of the optical-electric model during the training phase was
conducted entirely via simulation. However, our evaluation approach encom-
passed both simulated and real-world settings. In real-world evaluations, we
capture the displayed facial scene on a screen with a lensless camera.

Evaluation protocols. We tried two evaluation protocols: aligned face eval-
uation and random face evaluation. In the aligned face evaluation, the algorithm
takes the original aligned face in the dataset as input, retaining a constant face
height of 27cm and a scene-to-camera distance of 50cm. For the random face
evaluation, we further apply randomly perturbation to the facial image, includ-
ing face center shifting of [-15cm, 15cm], face height scaling ranging from [22cm,
30cm], face rotating within angles [-30◦, 30◦], and scene-to-camera distance shift-
ing between [40cm, 60cm]. Unlike the aligned face evaluation, the random face
evaluation is factored into the scene background because the whole scene is larger
than the face1. The background dataset BG-20K [26] is used to augment face
background. To avoid data leakage, different background images are used for
training and evaluation. Some augmentation examples are shown in Fig. 4.

5.2 Implementation Details

We adopted T2T-ViT [48] as the backbone of the face verification model. For ef-
ficient training, all lensless captures and optical convolution kernels were resized
to 200×240. To simulate the spatial intensity of scenes with RGB images, the
face images were rescaled to specific sizes based on the physical settings (face
height, scene-to-camera distance, mask-to-sensor distance). with details provided
in the supplementary. We trained face verification models using the Adam [24]
optimizer with a learning rate 5× 10−4 until 50 epochs. The batch size is 64×8.

For face-center alignment, we followed ArcFace [11] to normalize faces and
defined the centers of normalized faces as the face centers. With the center, we
center-cropped the lensless images to 60% of their original size in both width and
height. During training, we used the ground truth of the face center for align-
ment. For evaluation, we trained a separate face-center detection model to output
the face-center positions. This model was trained with the optimized mask from
the face verification model and the same backbone and training settings.

The augmentation curriculum was implemented during the initial 20 epochs
of the 50-epoch training period. The training began with augmentation param-
eters (shift, rotation, scale, background) identical to those in the aligned face
evaluation setting. Over these 20 epochs, we progressively adjusted these pa-
rameters to align with those employed in the random face evaluation setting.

To implement cross-modality distillation, we first trained an RGB teacher
model with aligned RGB images from the training dataset. Subsequently, we
trained the optoelectronic (lensless) model on the same dataset, this time with
lensless optics simulation, and incorporated distillation loss to enhance the learn-
ing process. It’s noted that both the RGB teacher model and the lensless student
model share the same model architecture, except for the simulated optics.
1 The field of view of our camera is limited by the 2θCRA (Chief Ray Angle) of the sen-

sor [7], which is 45◦ in our experiment. For example, if the scene-to-camera distance
dsc = 50cm, the width of the whole scene is around 2dsc tan θCRA ≈ 42cm.
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Table 1: Decoded Image quality for the
varying number of plaintext attacks.

#attacks 10 100 1,000 10,000

PSNR/SSIM 12.1/0.31 13.9/0.39 16.2/0.50 19.1/0.59

Scene Sensor Capture Random PSF Decoded Image

Fig. 7: Example of decoding lensless
captures using a random PSF.

Scene Sensor Capture Decoded image

Fig. 8: Decoded examples by decoder
trained with 10,000 attack pairs.

5.3 Privacy Protection with Learned Mask

To demonstrate the proposed does protect user privacy, we did the following
experiments. First, we showed that the raw lensless captures are unrecogniz-
able to both humans and normal RGB-based face verification models. Fig. 6
presents some visual examples from our lensless camera. The lensless captures
of two faces with similar backgrounds appear highly similar to each other (left
and middle ones), while captures of the same face under different backgrounds
appear quite distinct (left and right ones). This observation indicates that the
raw lensless data lack distinguishable cues for human perception of identity, as
variations in background overwhelm subtle differences between faces. Quanti-
tatively, a conventional RGB-based face verification model only achieves 51.2%
accuracy (50% by random guessing) on lensless captures from the LFW dataset,
further validating its potential for preserving privacy.

Moreover, we demonstrate that our lensless imaging system also preserves
privacy against reconstruction attacks. We assumed attackers cannot access the
camera’s point spread function (PSF) [22], and evaluated two attack scenarios:
i)Attackers only access lensless captures only: In this setup, we utilized
50 random mask patterns as surrogate PSFs and solved the inverse imaging
problems with ADMM [8]. The reconstructed images yielded very low average
quality, with only 11.7dB PSNR and 0.25 SSIM. Some reconstruction examples
are shown in Fig. 7. These results convincingly indicate that random PSF guesses
fail to reconstruct the origin scenes meaningfully. ii)Attackers access to RGB-
lensless face pairs: In this setup, we utilized RGB-lensless pairs, created from
the LFW dataset, to train a U-Net [36] as a decoder for simulating reconstruction
attacks. The performance of the trained decoder with the varying numbers of
pairs, as measured by image quality (PSNR/SSIM) on the left LFW dataset,
is summarized in Tab. 1. The results indicate that with fewer than 1,000 pairs,
the quality of the reconstructed images is very low, showing that attackers can
hardly recover the original scene with a limited number of plaintext attacks. We
also show some visual examples of reconstruction results by the decoder trained
with 10,000 pairs in Fig. 8. The visual results show that humans can hardly
recognize facial identity, further demonstrating that privacy protection ability.
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Table 2: Comparison with lensless face verification methods. Input type refers
to the input data type for face verification models.

Methods WebCam† FlatCam Ours FlatCam FlatVer FlatDCT Ours

Input type Captured
RGB

Reconstructed
RGB (real)*

Lensless
(real)

Reconstructed
RGB (sim.)

Lensless
(sim.)

Lensless
(sim.)

Lensless
(sim.)

D
at

as
et

s LFW (A) 99.32 - 91.51 92.18 68.13 80.13 96.78
LFW (R) 98.82 - 89.88 90.91 63.80 66.25 94.98

FCFD (A) 98.31 82.15 90.23 87.33 57.35 77.81 94.34
FCFD (R) 97.90 80.75 87.45 85.98 51.05 60.87 92.81

†Upper Bound. * We use the published real-captured dataset [44] for evaluation.

5.4 Comparison with Face Verification Methods

To evaluate the face verification performance with the lensless camera under
both constrained and unconstraint conditions, we compare our methods with
other state-of-the-art face verification methods under two protocols: aligned face
evaluation (A) and random face evaluation (R).

Lensless face verification methods can be divided into two classes: 2-step
reconstruct-and-verify and 1-step verify from the lensless capture. (1) For the
2-step method, WebCam is a traditional RGB-based face verification method.
FlatCam [44] reconstructs the face images from encoded images captured by
flatcam [4], one type of lensless camera, and then verifies faces on reconstructed
images. For 2-step random face evaluation, face detection [33] and alignment [9]
are conducted before verification. (2) For the 1-step method, FlatVer is a network
that directly verifies faces on raw flatcam data without reconstruction. FlatDCT
[14] is a method that transforms the flatcam captures into a multi-resolution
DCT subband representation and then verifies faces on this DCT representation.
The training of 1-step networks uses a similar augmentation as in our random
face evaluation. For a fair comparison, we reproduce all these methods using the
same backbone as our methods and we use the same training dataset to train
the RGB teacher in our distillation method, without using extra training data.

Results in Tab. 2 show that our method outperforms both the 2-step and
1-step methods by a significant margin, on both synthetic and real data. The
performance gap between the simulated and the real experiment is caused by
various factors, including inconsistencies in the image processing pipeline, noise
in ambient lighting, inaccuracies in the physical simulation model, and errors
in the hardware setup parameters. This performance gap is common in lensless
experiments [23, 38], and our gap is in an acceptable region. Even with this
performance gap, our model on real images outperforms FlatVer and FlatDCT
on synthetic ones and achieves better performance with FlatCam on real images.
All these results validate the effectiveness of our method.

5.5 Ablation Study

We investigate the effectiveness of each component in our method under two
evaluation settings: aligned face evaluation and random face verification.

In the aligned face evaluation, we first show how mask optimization gen-
erates better masks compared with randomly initialized baselines, and then
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Table 3: Ablation studies of (a) aligned and (b) random face evaluation.
(a) Aligned face evaluation.

Methods Datasets
Mask
optim.

Cross-modal
distillation

LFW
(A)

FCFD
(A)

× × 68.77 63.15
× ✓ 92.70 88.18
✓ × 71.33 64.82
✓ ✓ 96.78 94.34

(b) Random face evaluation.

Methods Datasets
Mask
optim.

Face-center
alignment

Augmentation
curriculum

Cross-modal
distillation

LFW
(R)

FCFD
(R)

× ✓ ✓ ✓ 91.36 82.43
✓ × ✓ ✓ 84.77 79.95
✓ ✓ × ✓ 83.65 80.32
✓ ✓ ✓ × 73.45 59.97
✓ ✓ ✓ ✓ 94.98 92.81

Random Initial Mask Optimized Mask

Simulated PSF Real-Captured PSF

Fig. 9: Top: Mask shape before
and post optimization. Bot-
tom: Simulated PSF is close to
the real-captured PSF.

Epoch
50%

Fig. 10: Comparison of test accuracy of our method
against ablated variations (CL refers to curriculum
learning) on LFW (R) dataset at different training
epochs.

demonstrate the effectiveness of distillation. Fig. 9 illustrates how the mask opti-
mization changes its shape and corresponding PSF. Tab. 3(a) shows that mask
optimization brings 3-4% performance boosting and the the proposed distillation
significantly boosts the accuracy by about 25%.

In the random face evaluation, we ablate all four key components: 1) mask op-
timization, 2) face-center alignment, 3) augmentation curriculum, and 4) cross-
modality distillation. Tab. 3(b) shows that all four components have positive
contributions, with the distillation being the most important one. Interestingly,
even with a random unlearned mask, the other components still provide rea-
sonable face verification results. We also visualize the epoch-validation accuracy
curves of our procedures in Fig. 10, when individual components are omitted.

This experiment demonstrated that naively training for our end-to-end pipeline
may result in poor performance, as we claimed in the introduction. All four key
components are important to the robustness of our system. Without any one
part, the accuracy drops below 85%, making the whole system infeasible.

5.6 Discussion about Cross-modality Distillation

Our ablation study indicates that cross-modality distillation is a critical com-
ponent for optimization. To demonstrate this, we visualize the facial features of
ten randomly selected individuals from the FCFD (R) dataset using t-SNE [27]
for dimensionality reduction. We compare these visualizations between models
with and without cross-modality distillation. Fig. 11a shows that cross-modality
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Features with distillation Features w/o distillation

(a) Visualization for face features. Different colors represent
different identities. (b) Loss over epochs.

Fig. 11: Ablation study of distillation. (a) Features for different identities are better
grouped after distillation. (b) Distillation improves the convergence.

distillation effectively separates features from different identities, enhancing the
performance of face verification tasks. Furthermore, we plot the face verifica-
tion loss curves for both models during training, as depicted in Fig. 11b. The
comparison reveals that the model lacking distillation tends to converge to a
local minimum with poor generalization capabilities. In contrast, incorporating
distillation allows the model to avoid these local minima during optimization.

Our distillation, coupled with the novel augmentation and alignment, enables
our model to learn transformation-invariant features, evidenced by consistent
performance in both aligned and random evaluations in Tab. 2. In contrast,
relying on distillation and normal augmentation alone, alternative approaches
such as FlatVer and FlatDCT [14] show limited accuracy, achieving only 75.6%
and 78.4% on LFW(R) and 66.0% and 72.6% on FCFD(R) respectively.

5.7 Robustness to Varying Lighting Conditions
Our lensless face verification system can handle diverse lighting conditions be-
cause the training simulation incorporates various noise levels. Specifically, we
introduce noise with an average signal-to-noise ratio (SNR) of 30dB during train-
ing using the camera noise model [13]. On the LFW(A) dataset, the verification
accuracy under SNR 20dB, 25dB, 30dB, 35dB, and 40dB are 94.20%, 96.03%,
96.78%, 96.62%, and 96.68%, respectively. This result shows the robustness of
our model against different lighting conditions. Furthermore, optimizing the elec-
tronic part of our lensless model for low-light conditions (SNR=20dB) can fur-
ther improve the accuracy (from 94.20% to 96.02%). This optimization further
demonstrates the adaptability and efficiency of our approach in challenging light-
ing scenarios. More details can be found in the supplementary.

6 Conclusion and Limitation
We introduce an innovative end-to-end optimization approach for robust face ver-
ification that operates directly on raw lensless captures. This method enhances
privacy, accuracy, and processing speed, representing a significant advancement
over traditional two-stage lensless face verification. We validate our approach
through simulations and further confirm its effectiveness with a real-world lens-
less camera prototype. When compared with traditional RGB-based face veri-
fications, the lensless face verification system provides inherent hardware-level
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privacy protections with a small, efficient, and low-cost device and presents an at-
tractive performance tradeoff. One limitation is that there is still a performance
gap between simulations and real-world environments, as one of the common
problems of lensless networks trained on simulated data.
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